Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Arq Bras Cardiol ; 121(2): e20230462, 2024.
Artigo em Português, Inglês | MEDLINE | ID: mdl-38597542

RESUMO

BACKGROUND: ST-segment elevation myocardial infarction (STEMI) is one of the leading causes of fatal cardiovascular diseases, which have been the prime cause of mortality worldwide. Diagnosis in the early phase would benefit clinical intervention and prognosis, but the exploration of the biomarkers of STEMI is still lacking. OBJECTIVES: In this study, we conducted a bioinformatics analysis to identify potential crucial biomarkers in the progress of STEMI. METHODS: We obtained GSE59867 for STEMI and stable coronary artery disease (SCAD) patients. Differentially expressed genes (DEGs) were screened with the threshold of |log2fold change| > 0.5 and p <0.05. Based on these genes, we conducted enrichment analysis to explore the potential relevance between genes and to screen hub genes. Subsequently, hub genes were analyzed to detect related miRNAs and DAVID to detect transcription factors for further analysis. Finally, GSE62646 was utilized to assess DEGs specificity, with genes demonstrating AUC results exceeding 75%, indicating their potential as candidate biomarkers. RESULTS: 133 DEGs between SCAD and STEMI were obtained. Then, the PPI network of DEGs was constructed using String and Cytoscape, and further analysis determined hub genes and 6 molecular complexes. Functional enrichment analysis of the DEGs suggests that pathways related to inflammation, metabolism, and immunity play a pivotal role in the progression from SCAD to STEMI. Besides, related-miRNAs were predicted, has-miR-124, has-miR-130a/b, and has-miR-301a/b regulated the expression of the largest number of genes. Meanwhile, Transcription factors analysis indicate that EVI1, AML1, GATA1, and PPARG are the most enriched gene. Finally, ROC curves demonstrate that MS4A3, KLRC4, KLRD1, AQP9, and CD14 exhibit both high sensitivity and specificity in predicting STEMI. CONCLUSIONS: This study revealed that immunity, metabolism, and inflammation are involved in the development of STEMI derived from SCAD, and 6 genes, including MS4A3, KLRC4, KLRD1, AQP9, CD14, and CCR1, could be employed as candidate biomarkers to STEMI.


FUNDAMENTO: O infarto do miocárdio com elevação do segmento ST (IAMCSST) é uma das principais causas de doenças cardiovasculares fatais, que têm sido a principal causa de mortalidade em todo o mundo. O diagnóstico na fase inicial beneficiaria a intervenção clínica e o prognóstico, mas ainda falta a exploração dos biomarcadores do IAMCSST. OBJETIVOS: Neste estudo, conduzimos uma análise bioinformática para identificar potenciais biomarcadores cruciais no progresso do IAMCSST. MÉTODOS: Obtivemos GSE59867 para pacientes com IAMCSST e doença arterial coronariana estável (DACE). Genes diferencialmente expressos (GDEs) foram selecionados com o limiar de |log2fold change| > 0,5 e p < 0,05. Com base nesses genes, conduzimos análises de enriquecimento para explorar a relevância potencial entre genes e para rastrear genes centrais. Posteriormente, os genes centrais foram analisados para detectar miRNAs relacionados e DAVID para detectar fatores de transcrição para análise posterior. Finalmente, o GSE62646 foi utilizado para avaliar a especificidade dos GDEs, com genes demonstrando resultados de AUC superiores a 75%, indicando seu potencial como candidatos a biomarcadores. Posteriormente, os genes centrais foram analisados para detectar miRNAs relacionados e DAVID para detectar fatores de transcrição para análise posterior. Finalmente, o GSE62646 foi utilizado para avaliar a especificidade dos GDEs, com genes demonstrando resultados de AUC superiores a 75%, indicando seu potencial como candidatos a biomarcadores. RESULTADOS: 133 GDEs entre DACE e IAMCSST foram obtidos. Em seguida, a rede PPI de GDEs foi construída usando String e Cytoscape, e análises posteriores determinaram genes centrais e 6 complexos moleculares. A análise de enriquecimento funcional dos GDEs sugere que as vias relacionadas à inflamação, metabolismo e imunidade desempenham um papel fundamental na progressão de DACE para IAMCSST. Além disso, foram previstos miRNAs relacionados, has-miR-124, has-miR-130a/b e has-miR-301a/b regularam a expressão do maior número de genes. Enquanto isso, a análise dos fatores de transcrição indica que EVI1, AML1, GATA1 e PPARG são os genes mais enriquecidos. Finalmente, as curvas ROC demonstram que MS4A3, KLRC4, KLRD1, AQP9 e CD14 exibem alta sensibilidade e especificidade na previsão de IAMCSST. CONCLUSÕES: Este estudo revelou que imunidade, metabolismo e inflamação estão envolvidos no desenvolvimento de IAMCSST derivado de DACE, e 6 genes, incluindo MS4A3, KLRC4, KLRD1, AQP9, CD14 e CCR1, poderiam ser empregados como candidatos a biomarcadores para IAMCSST.


Assuntos
Doença da Artéria Coronariana , MicroRNAs , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/genética , Perfilação da Expressão Gênica/métodos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Biomarcadores , MicroRNAs/genética , Fatores de Transcrição/genética , Biologia Computacional/métodos , Inflamação
2.
Acta Cardiol ; 79(2): 215-223, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38456718

RESUMO

BACKGROUND: This study aimed to uncover the diagnostic value of circRNA (Circ)_0051386 in acute ST-segment elevation myocardial infarction (STEMI) and its predictive value for the occurrence of adverse major adverse cardiovascular events (MACEs). METHODS: This study included 166 patients with STEMI and 83 health donors. The expression levels of serum Circ_0051386 in these participants were quantified using real-time quantitative polymerase chain reaction (RT-qPCR). Additionally, the incidence of MACEs during a 6-month follow-up period after percutaneous coronary intervention (PCI) was collected in the STEMI patient cohort. RESULTS: Before and after propensity score matching (PSM), Circ_0051386 all had higher expression levels in the patients with STEMI than the normal subjects (all p < .001)and robust diagnosis values for the STEMI (AUC = 0.766, 0.779). Kaplan-Meier curves showed the high expression Circ_0051386 group had a higher occurrence rate of MACEs during a 6-month follow-up after PCI in patients with STEMI and this phenomenon was confirmed by internal validation (all p < .05). In addition, the multivariate COX regression showed gensini score (HR = 1.020, 95% CI = 1.002 - 1.038, p = .028) and Circ_0051386 (HR = 2.468, 95% CI =1.548-3.935, p < .001)were independent risk factors of the occurrence of MACEs in patients with STEMI after PCI. Pearson analysis presented that Circ_0051386 was positively correlated with gensini scores (r = 0.33), IL-1ß (r = 0.55)and TNF-α(r = 0.41). CONCLUSION: Our study indicated that Circ_0051386 is a biomarker of the diagnostic for STEMI and the predictor of the MACEs in STEMI patients after PCI. Its potential role in STEMI may be the regulation of inflammation in the vascular endothelial.


Assuntos
Infarto Miocárdico de Parede Anterior , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/genética , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia , Intervenção Coronária Percutânea/efeitos adversos , RNA Circular/genética , Arritmias Cardíacas/etiologia
3.
Sci Rep ; 14(1): 3424, 2024 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341440

RESUMO

The ST-elevation Myocardial Infarction (STEMI) and Non-ST-elevation Myocardial Infarction (NSTEMI) might occur because of coronary artery stenosis. The gene biomarkers apply to the clinical diagnosis and therapeutic decisions in Myocardial Infarction. The aim of this study was to introduce, enrich and estimate timely the blood gene profiles based on the high-throughput data for the molecular distinction of STEMI and NSTEMI. The text mining data (50 genes) annotated with DisGeNET data (144 genes) were merged with the GEO gene expression data (5 datasets) using R software. Then, the STEMI and NSTEMI networks were primarily created using the STRING server, and improved using the Cytoscape software. The high-score genes were enriched using the KEGG signaling pathways and Gene Ontology (GO). Furthermore, the genes were categorized to determine the NSTEMI and STEMI gene profiles. The time cut-off points were identified statistically by monitoring the gene profiles up to 30 days after Myocardial Infarction (MI). The gene heatmaps were clearly created for the STEMI (high-fold genes 69, low-fold genes 45) and NSTEMI (high-fold genes 68, low-fold genes 36). The STEMI and NSTEMI networks suggested the high-score gene profiles. Furthermore, the gene enrichment suggested the different biological conditions for STEMI and NSTEMI. The time cut-off points for the NSTEMI (4 genes) and STEMI (13 genes) gene profiles were established up to three days after Myocardial Infarction. The study showed the different pathophysiologic conditions for STEMI and NSTEMI. Furthermore, the high-score gene profiles are suggested to measure up to 3 days after MI to distinguish the STEMI and NSTEMI.


Assuntos
Infarto do Miocárdio , Infarto do Miocárdio sem Supradesnível do Segmento ST , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Infarto do Miocárdio com Supradesnível do Segmento ST/genética , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio sem Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio sem Supradesnível do Segmento ST/genética , Estudos Prospectivos , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Expressão Gênica , Fatores de Risco
4.
Indian Heart J ; 76(1): 67-70, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38309470

RESUMO

BACKGROUND: Genetic polymorphism in endothelial Nitric Oxide Synthase (eNOS) are associated with occurrence of multiple cardiovascular diseases (CVDs). METHODS: This study included 300 young ST-segment elevation myocardial infarction (STEMI) patients and 300 healthy controls. STEMI patients were divided into two groups: premature coronary artery disease [CAD] (STEMI<40 years of age) and older STEMI (>40 years of age). Genetic polymorphisms in the eNOS gene (894G/T) was evaluated in both subjects and controls. Plasma levels of nitric oxide (NO) were estimated for both patients as well as controls. RESULTS: Mean age of the study population was 49.7 ± 9.2 years with premature CAD being present in 58 (19.3 %) patients. No significant difference at genotypic (P = 0.589, odds ratio (OR) = 0.9, 95 % CI = 0.6-1.6) and allelic level (P = 0.173, OR = 1.2, 95 % CI = 0.9-1.4) was observed between STEMI patients and healthy controls. Genotype 894 TT had significantly higher frequency in STEMI patients >40 years (P = 0.047, OR: 2.5; 95 % CI = 1.0-6.0). No significant difference at genotypic (P = 0.279) and allelic level (P = 0.493) was observed between premature CAD (STEMI age <40 years) and healthy controls. NO levels (131 ± 59.6 µM vs 118.11 ± 49.96 µM; P = 0.001) was significantly higher in healthy controls as compared to STEMI patients >40 years of age (P= 0.001). CONCLUSION: There was significant association of eNOS gene polymorphism Glu298Asp with STEMI patients > 40 years. However, this association was not observed in premature CAD patients. Lower levels of NO in STEMI patients >40 years suggests its potential role as a marker of CVD.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio com Supradesnível do Segmento ST , Adulto , Humanos , Pessoa de Meia-Idade , Doença da Artéria Coronariana/epidemiologia , Genótipo , Óxido Nítrico , Óxido Nítrico Sintase Tipo III/genética , Polimorfismo Genético , Fatores de Risco , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/genética
5.
Int J Med Sci ; 21(3): 483-491, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250610

RESUMO

Background: Transcription factor 21 (TCF21, epicardin, capsuling, pod-1) is expressed in the epicardium and is involved in the regulation of cell fate and differentiation via epithelial-mesenchymal transformation during development of the heart. In addition, TCF21 can suppress the differentiation of epicardial cells into vascular smooth muscle cells and promote cardiac fibroblast development. This study aimed to explore whether TCF21 gene (12190287G/C) variants affect coronary artery disease risk. Methods: We enrolled 381 patients who had stable angina, 138 with ST elevation myocardial infarction (STEMI), and 276 healthy subjects. Genotyping of rs12190287 of the TCF21 gene was performed. Results: Higher frequencies of the CC genotype were found in the patients with stable angina/STEMI than in the healthy controls. After adjusting for diabetes mellitus, hypertension, age, sex, smoking, body mass index and hyperlipidemia, the patients with the CC genotype of the TCF21 gene were associated with 2.49- and 9.19-fold increased risks of stable angina and STEMI, respectively, compared to the patients with the GG genotype. Furthermore, TCF21 CC genotypes showed positive correlations with both stable angina and STEMI, whereas TCF21 GG genotypes exhibited a negative correlation with STEMI. Moreover, the stable angina and STEMI patients with the CC genotype had significantly elevated high-sensitivity C-reactive protein levels than those with the GG genotype. In addition, significant associations were found between type 2 diabetes mellitus, hypertension, and hyperlipidemia with TCF21 gene polymorphisms (p for trend < 0.05). Conclusion: TCF21 gene polymorphisms may increase susceptibility to stable angina and STEMI.


Assuntos
Angina Estável , Diabetes Mellitus Tipo 2 , Hiperlipidemias , Hipertensão , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Angina Estável/genética , Infarto do Miocárdio com Supradesnível do Segmento ST/genética , China , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética
6.
Coron Artery Dis ; 35(2): 122-134, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38009375

RESUMO

AIM: Acute injury and subsequent remodelling responses to ST-segment elevation myocardial infarction (STEMI) are major determinants of clinical outcome. Current imaging and plasma biomarkers provide delayed readouts of myocardial injury and recovery. Here, we sought to systematically characterize all microRNAs (miRs) released during the acute phase of STEMI and relate miR release to magnetic resonance imaging (MRI) findings to predict acute and late responses to STEMI, from a single early blood sample. METHODS AND RESULTS: miRs were quantified in blood samples obtained from patients after primary PCI (PPCI) for STEMI. Cardiac MRI (cMRI) was performed to quantify myocardial edema, infarct size and salvage index. Regression models were constructed to predict these outcomes measures, which were then tested with a validation cohort. Transcoronary miR release was quantified from paired measurements of coronary artery and coronary sinus samples. A cell culture model was used to identify endothelial cell-derived miRs.A total of 72 patients undergoing PPCI for acute STEMI underwent miR analysis and cMRI. About >200 miRs were detectable in plasma after STEMI, from which 128 miRs were selected for quantification in all patients. Known myocardial miRs demonstrated a linear correlation with troponin release, and these increased across the transcoronary gradient. We identified novel miRs associated with microvascular injury and myocardial salvage. Regression models were constructed using a training cohort, then tested in a validation cohort, and predicted myocardial oedema, infarct size and salvage index. CONCLUSION: Analysis of miR release after STEMI identifies biomarkers that predict both acute and late outcomes after STEMI. A novel miR-based biomarker score enables the estimation of area at risk, late infarct size and salvage index from a single blood sample 6 hours after PPCI, providing a simple and rapid alternative to serial cMRI characterization of STEMI outcome.


Assuntos
Infarto Miocárdico de Parede Anterior , MicroRNAs , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico por imagem , Infarto do Miocárdio com Supradesnível do Segmento ST/genética , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Intervenção Coronária Percutânea/métodos , Infarto Miocárdico de Parede Anterior/complicações , MicroRNAs/genética , Biomarcadores , Células Endoteliais , Resultado do Tratamento
7.
Thromb Haemost ; 124(3): 192-202, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37846463

RESUMO

BACKGROUND: Reduced effect of antiplatelet therapy has been reported in patients with ST-segment elevation myocardial infarction (STEMI). MicroRNAs (miRs) may influence platelet function and maturity, and subsequently the effect of antiplatelet therapy. OBJECTIVES: We aimed to explore the association between miR expression and platelet function and maturity in patients with acute STEMI and healthy individuals. METHODS: We performed an observational study of STEMI patients admitted directly to primary percutaneous coronary intervention. Patients were treated with antiplatelet therapy according to guidelines. Within 24 hours after admission, blood samples were obtained to measure: the expression of 10 candidate miRs, platelet function markers using advanced flow cytometry, platelet aggregation, serum thromboxane B2, and platelet maturity markers. Furthermore, blood samples from healthy individuals were obtained to determine the normal variation. RESULTS: In total, 61 STEMI patients and 50 healthy individuals were included. STEMI patients had higher expression of miR-21-5p, miR-26b-5p, and miR-223-3p and lower expression of miR-150-5p, miR423-5p, and miR-1180-3p than healthy individuals. In STEMI patients, the expression of miR-26b-5p showed the most consistent association with platelet function (all p-values <0.05, Spearman's rho ranging from 0.27 to 0.41), while the expression of miR-150-5p and miR-223-3p showed negative associations with platelet function. No association between miR expression and platelet maturity markers was observed. CONCLUSION: In patients with STEMI, the expression of six miRs was significantly different from healthy individuals. The expression of miR-26b-5p may affect platelet function in acute STEMI patients and potentially influence the effect of antiplatelet therapy.


Assuntos
MicroRNAs , Intervenção Coronária Percutânea , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/genética , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia , Inibidores da Agregação Plaquetária/uso terapêutico , MicroRNAs/genética , Agregação Plaquetária
8.
Sci Rep ; 13(1): 15688, 2023 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-37735234

RESUMO

M6A methylation is the most prevalent and abundant RNA modification in mammals. Although there are many studies on the regulatory role of m6A methylation in the immune response, the m6A regulators in the pathogenesis of acute ST-segment elevation myocardial infarction (STEMI) remain unclear. We comprehensively analysed the role of m6A regulators in STEMI and built a predictive model, revealing the relationship between m6A methylations and the immune microenvironment. Differential analysis revealed that 18 of 24 m6A regulators were significantly differentially expressed, and there were substantial interactions between the m6A regulator. Then, we established a classifier and nomogram model based on 6 m6A regulators, which can easily distinguish the STEMI and control samples. Finally, two distinct m6A subtypes were obtained and significantly differentially expressed in terms of infiltrating immunocyte abundance, immune reaction activity and human leukocyte antigen genes. Three hub m6A phenotype related genes (RAC2, RELA, and WAS) in the midnightblue module were identified by weighted gene coexpression network analysis, and were associated with immunity. These findings suggest that m6A modification and the immune microenvironment play a key role in the pathogenesis of STEMI.


Assuntos
Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Animais , Metilação , Infarto do Miocárdio com Supradesnível do Segmento ST/genética , Arritmias Cardíacas , Redes Reguladoras de Genes , Nomogramas , Mamíferos
9.
Int J Mol Sci ; 24(15)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37569451

RESUMO

Coronary artery disease (CAD) is a leading cause of mortality worldwide. In this study, we aimed to assess the potential of plasma long non-coding RNAs (lncRNAs) LIPCAR and MALAT1 and microRNAs (miRNAs) miR-142-3p and miR-155-5p to discriminate unstable CAD patients from stable ones. 23 stable angina (SA), 21 unstable angina (UA), and 50 ST-segment elevation myocardial infarction (STEMI) patients were enrolled; their plasma was collected. ncRNA plasma levels were evaluated using RT-qPCR. All measured ncRNA levels were significantly increased in UA patients' plasma compared to SA patients' plasma and in STEMI-with major adverse cardiovascular event (MACE) patients' plasma vs. STEMI-without MACE patients' plasma. ROC analysis showed that increased levels of LIPCAR and MALAT1 were associated with UA, and the prognostic model improved with the addition of miR-155-5p levels. The assessed lncRNAs discriminated between hyperglycemic (HG) and normoglycemic (NG) UA patients, and they were associated with MACE incidence in STEMI patients; this prediction was improved by the addition of miR-142-3p levels to the ROC multivariate model. We propose LIPCAR and MALAT1 as effective diagnostic markers for vulnerable CAD, their association with HG in UA patients, and as robust predictors for unfavorable evolution of STEMI patients.


Assuntos
Síndrome Coronariana Aguda , Doença da Artéria Coronariana , MicroRNAs , RNA Longo não Codificante , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Síndrome Coronariana Aguda/genética , Angina Instável/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Infarto do Miocárdio com Supradesnível do Segmento ST/genética
10.
BMC Med Genomics ; 16(1): 151, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37391746

RESUMO

BACKGROUND: ST-elevated myocardial infarction (STEMI) is the leading cause of mortality worldwide. The mortality rate of heart attacks has decreased due to various preventive factors and the development of early diagnostic resuscitation measures, but the long-term prognosis remains poor. The present study aimed to identify novel serum biomarkers in STEMI patients and explored a possible new mechanism of STEMI from an immune molecular angle with bioinformatics analysis. METHODS: Gene expression profiles were obtained from Gene Expression Omnibus (GEO) database. Differential gene analysis, machine learning algorithms, gene set enrichment analysis, and immune cell infiltration analysis were conducted using R software. RESULTS: We identified 146 DEGs (differentially expressed genes) in the integrated dataset between the STEMI and CAD (coronary artery disease) groups. Immune infiltration analysis indicated that eleven cell types were differentially infiltrated. Through correlation analysis, we further screened 25 DEGs that showed a high correlation with monocytes and neutrophils. Afterwards, five genes consistently selected by all three machine learning algorithms were considered candidate genes. Finally, we identified a hub gene (ADM) as a biomarker of STEMI. AUC curves showed that ADM had more than 80% high accuracy in all datasets. CONCLUSIONS: In this study, we explored a potentially new mechanism of STEMI from an immune molecular perspective, which might provide insights into the pathogenesis of STEMI. ADM positively correlated with monocytes and neutrophils, suggesting its potential role in the immune response during STEMI. Additionally, we validated the diagnostic performance of ADM in two external datasets, which could help to develop new diagnostic tools or therapeutic strategies.


Assuntos
Doença da Artéria Coronariana , Infarto do Miocárdio , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Infarto do Miocárdio com Supradesnível do Segmento ST/genética , Infarto do Miocárdio/genética , Algoritmos , Biologia Computacional
11.
Comput Biol Med ; 161: 106997, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37216774

RESUMO

BACKGROUND AND AIMS: Acute ST-Segment Myocardial infarction (STEMI) is a common cardiovascular issue with a considerable burden of the disease. The underlying genetic basis and non-invasive markers were not well-established. METHODS: Here, we implemented a systematic literature review and meta-analyses integration methods on 217 STEMI patients and 72 normal individuals to prioritize and detect the STEMI-related non-invasive markers. Five high-scored genes were experimentally assessed on 10 STEMI patients and 9 healthy controls. Finally, the presence of co-expressed nodes of top-score genes was explored. RESULTS: The differential expression of ARGL, CLEC4E, and EIF3D were significant for Iranian patients. The ROC curve for gene CLEC4E revealed an AUC (95% CI) of 0.786 (0.686-0.886) in the prediction of STEMI. The Cox-PH model was fitted to stratify high/low risk heart failure progression (CI-index = 0.83, Likelihood-Ratio-Test = 3e-10). The SI00AI2 was a common biomarker between STEMI and NSTEMI patients. CONCLUSIONS: In conclusion, the high-scored genes and prognostic model could be applicable for Iranian patients.


Assuntos
Insuficiência Cardíaca , Infarto do Miocárdio , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Infarto do Miocárdio com Supradesnível do Segmento ST/genética , Irã (Geográfico) , Infarto do Miocárdio/genética , Infarto do Miocárdio/diagnóstico , Biomarcadores , Fatores de Risco , Fator de Iniciação 3 em Eucariotos
13.
Europace ; 25(1): 101-111, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35942675

RESUMO

AIMS: Ventricular fibrillation (VF) occurring in the acute phase of ST-elevation myocardial infarction (STEMI) is the leading cause of sudden cardiac death worldwide. Several studies showed that reduced connexin 43 (Cx43) expression and reduced conduction velocity increase the risk of VF in acute myocardial infarction (MI). Furthermore, genetic background might predispose individuals to primary VF (PVF). The primary objective was to evaluate the presence of GJA1 variants in STEMI patients. The secondary objective was to evaluate the arrhythmogenic impact of GJA1 variants in STEMI patients with VF. METHODS AND RESULTS: The MAP-IDM prospective cohort study included 966 STEMI patients and was designed to identify genetic predisposition to VF. A total of 483 (50.0%) STEMI patients with PVF were included. The presence of GJA1 variants increased the risk of VF in STEMI patients [from 49.1 to 70.8%, P = 0.0423; odds ratio (OR): 0.40; 95% confidence interval: 0.16-0.97; P = 0.04]. The risk of PVF decreased with beta-blocker intake (from 53.5 to 44.8%, P = 0.0085), atrial fibrillation (from 50.7 to 26.4%, P = 0.0022), and with left ventricular ejection fraction >50% (from 60.2 to 41.4%, P < 0.0001). Among 16 GJA1 variants, three novel heterozygous missense variants were identified in three patients: V236I, H248R, and I327M. In vitro studies of these variants showed altered Cx43 localization and decreased cellular communication, mainly during acidosis. CONCLUSION: Connexin 43 variants are associated with increased VF susceptibility in STEMI patients. Restoring Cx43 function may be a potential therapeutic target to prevent PVF in patients with acute MI. CLINICAL TRIAL REGISTRATION: Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT00859300.


Assuntos
Infarto do Miocárdio , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Fibrilação Ventricular/diagnóstico , Fibrilação Ventricular/genética , Fibrilação Ventricular/complicações , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/genética , Infarto do Miocárdio com Supradesnível do Segmento ST/complicações , Conexina 43/genética , Estudos Prospectivos , Volume Sistólico , Função Ventricular Esquerda , Infarto do Miocárdio/complicações , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Fatores de Risco
14.
Indian Heart J ; 74(6): 519-523, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36370803

RESUMO

BACKGROUND: Genetic polymorphism in MMPs are associated with multiple adverse CV events. There is little evidence regarding role of MMPs and their genetic polymorphisms in young (<50 years) ST-segment elevation myocardial infarction (STEMI) patients. METHODS: This study included 100 young (18-50 years) STEMI patients and 100 healthy controls. Serum levels of MMP-3, MMP-9 and TIMP were estimated for both patients as well as controls. Additionally, genetic polymorphisms in the MMP-9 gene (-1562 C/T and R279Q) & MMP-3 gene (5A/6A-1612) was evaluated. All these patients were followed up for one year and major adverse cardiac events (MACE) were determined. RESULTS: Serum levels of MMP-3 (128.16 ± 115.81 vs 102.3 ± 57.28 ng/mL; P = 0.04), MMP-9 (469.63 ± 238.4 vs 188.88 ± 94.08 pg/mL; P < 0.0001) and TIMP (5.84 ± 1.93 vs 2.28 ± 1.42 ng/mL; P < 0.0001) were significantly higher in patients as compared to controls. Additionally, patients with genetic polymorphisms in the MMP genes (5A/5A, 6A/6A and the AG genotypes) had an increased risk of STEMI. Patients with MACE had significantly higher levels of MMP-9 (581.73 ± 260.93 vs 438.01 ± 223.38 pg/mL; P = 0.012). A cutoff value of 375.5 pg/mL of MMP-9 was best able to discriminate patients with STEMI and MACE with sensitivity of 77.3% and specificity of 57%. CONCLUSION: Novel biomarkers such as MMP-3, MMP-9 and TIMP and their genetic polymorphism are associated with the susceptibility for STEMI in young individuals. Higher MMP-9 levels in STEMI patients with MACE suggests its potential role in predicting cardiac remodeling and left ventricular dysfunction.


Assuntos
Metaloproteinase 3 da Matriz , Metaloproteinase 9 da Matriz , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Genótipo , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 9 da Matriz/genética , Polimorfismo Genético , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/genética , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Inibidores Teciduais de Metaloproteinases/genética
15.
J Clin Lab Anal ; 36(7): e24529, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35666553

RESUMO

BACKGROUND: Atherosclerosis plays an important role in the pathophysiology of acute coronary syndrome (ACS). CD36 is a scavenger receptor involved in lipid metabolism. Some single-nucleotide variants in the non-coding region could indirectly alter the expression and the function of the protein. OBJECTIVE: The aim of this study was to investigate the gene and protein expression associated with CD36 variants (rs1194182;C > G; rs1049654;C > A, rs1334512;G > T, and rs3211892;G > A) in ACS patients from the western Mexican population. METHODS: We recruited 310 ACS patients and 308 subjects in the control group (CG). Genotyping was determined by TaqMan SNP genotyping assays. CD36 expression at the mRNA level was quantified by TaqMan gene expression assays. Soluble CD36 (sCD36) was measured by enzyme-linked immunosorbent assay. RESULTS: We show that rs1194182G > C variant provides a protective effect with a 1.7-fold lower susceptibility to develop ACS (p  = 0.03); however, this association was masked by diabetes and dyslipidemia. We observed a higher sCD36 concentration in patient with ST-segment elevation myocardial infarction (STEMI) compared with patients with unstable angina (UA) (p  = 0.038). Likewise, in diabetic patients versus non-diabetic (p < 0.001). We observed in patients an increase in CD36 mRNA expression (1.91 times higher) than in the CG (p  = 0.02). CONCLUSION: The rs1194182 seems to be associated with diabetes in a risky manner, in ACS patients and protective for dyslipidemia in both groups. The concentration of sCD36 seems to be associated with the clinical spectrum of the ACS patients and the presence of diabetes, since patients with STEMI present significantly elevated level compared with UA.


Assuntos
Síndrome Coronariana Aguda , Antígenos CD36 , Dislipidemias , Infarto do Miocárdio com Supradesnível do Segmento ST , Síndrome Coronariana Aguda/genética , Angina Instável/genética , Antígenos CD36/genética , Expressão Gênica , Humanos , RNA Mensageiro/genética , Infarto do Miocárdio com Supradesnível do Segmento ST/genética
17.
J Cardiovasc Transl Res ; 15(6): 1406-1413, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35507256

RESUMO

Existing markers of myocardial infarction have limited diagnostic value for infarction, so it is necessary to identify new markers of infarction. To study the predictive value of serum miRNA-203 for acute ST-elevation myocardial infarction. Seventy patients with STEMI who were diagnosed in Hefei Second People's Hospital from December 2020 to December 2021 were selected, and 35 patients with transient chest pain who were hospitalized for other diseases in the Cardiology Department of our hospital during the same period were selected as the control group. The sera of the two groups of patients were collected, and a miRNA-203 semiquantitative experiment was performed. The miRNA-203 level in the STEMI group was higher than that in the control group. The AUC area of miRNA-203 in predicting STEMI was 0.912. Logistic regression analysis showed that miRNA-203 and white blood cell counts were independent risk factors for STEMI (P<0.05), and their ORs (95% CI) were 3.913 (1.574-9.728) and 2.13 (1.247-3.641), respectively. The present study reveals that miRNA-203 could be a possible candidate for a novel biomarker in the early prediction of STEMI.


Assuntos
MicroRNAs , Infarto do Miocárdio , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/genética , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , Biomarcadores , Fatores de Risco , Arritmias Cardíacas , MicroRNAs/genética
18.
Contrast Media Mol Imaging ; 2022: 7343412, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35475279

RESUMO

Background: ST-elevation myocardial infarction (STEMI) is a myocardial infarction (MI) with ST-segment exaltation of electrocardiogram (ECG) caused by vascular occlusion of the epicardium. However, the diagnostic markers of STEMI remain little. Methods: STEMI raw microarray data are acquired from the Gene Expression Omnibus (GEO) database. Based on GSE60993 and GSE61144, differentially expressed genes (DEGs) are verified via R software, and key modules associated with pathological state of STEMI are verified by weighted correlation network analysis (WGCNA). Take the intersection gene of key module and DEGs to perform the pathway enrichment analyses by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). Construct the protein-protein interaction (PPI) network by Cytoscape. Then, select and identify the diagnostic biomarkers of STEMI by least absolute shrinkage and selection operator (LASSO) logistic regression and support vector machine-recursive feature elimination (SVM-RFE) algorithms. Finally, assess the infiltration of immune cells of STEMI by CIBERSORT and analyze the correlation between diagnostic markers and infiltrating immune cells. Results: We get 710 DEGs in the STEMI group and 376 genes associated with STEMI in blue module. 92 intersection genes were concentrated in 30 GO terms and 2 KEGG pathways. 28 hub genes involved in the development of STEMI. Moreover, upregulated ALOX5AP (AUC = 1.00) and BST1 (AUC = 1.00) are confirmed as diagnostic markers of STEMI. CD8+T cells, regulatory T (Treg) cells, resting natural killer (NK) cells, M0 macrophages, resting mast cells, and neutrophils are related to the procession of STEMI. Moreover, ALOX5AP and BST1 are positively related to resting NK cells, M0 macrophages, and neutrophils, while ALOX5AP and BST1 are negatively related to CD8+ T cells, Treg cells, and resting mast cells. Conclusion: ALOX5AP and BST1 may be the diagnostic markers of STEMI. Immune cell infiltration plays a key role in the development of STEMI.


Assuntos
Infarto do Miocárdio com Supradesnível do Segmento ST , Biologia Computacional , Perfilação da Expressão Gênica , Humanos , Mapas de Interação de Proteínas/genética , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/genética , Software
19.
EBioMedicine ; 78: 103964, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35339897

RESUMO

BACKGROUND: Clonal haematopoiesis driven by mutations in DNMT3A or TET2 has recently been identified as a new risk factor for cardiovascular disease. Experimental studies suggest that these mutations may enhance inflammation which accelerates the disease progression. We aim to investigate the prevalence of mutations in DNMT3A and TET2 and their association with prognosis of patients with ST-segment elevation myocardial infarction (STEMI). METHODS: Targeted deep sequencing for DNMT3A and TET2 and inflammatory cytokines (IL-1ß, IL-6, TNF-α, INF-γ) were analyzed in 485 patients with STEMI. Major adverse cardiac events (MACE) was a composite of death, myocardial infarction, stroke, or hospitalization due to heart failure. FINDINGS: Patients carrying DNMT3A- or TET2-CH-driver mutations with a variant allele frequency (VAF) ≥2% were found in 12.4% (60 of 485) of STEMI patients and experienced an increased incidence of the death (30.9% vs 15.5%, P = 0.001) and MACE (44.5% vs 21.8%, P < 0.001) compared to those who did not, during a median follow up of 3.0 (interquartile range: 2.4-3.4) years. After adjusting for confounders, mutation remained an independent predictor of death (HR = 1.967, 95% CI 1.103-3.507, P = 0.022) and MACE (HR = 1.833, 95% CI 1.154-2.912, P = 0.010). Concentrations of plasma IL-1ß (P = 0.010) and IL-6 (P = 0.011) were significantly elevated in DNMT3A/TET2 VAF≥2% group. INTERPRETATION: DNMT3A- or TET2-CH-driver mutations with a VAF≥2% were observed in over 10% STEMI patients, and were significantly associated with poorer prognosis, which might be explained by higher levels of inflammatory cytokines in mutations carriers. FUNDING: National Natural Science Foundation of China; National Key R&D Program of China.


Assuntos
DNA Metiltransferase 3A , Proteínas de Ligação a DNA , Dioxigenases , Infarto do Miocárdio com Supradesnível do Segmento ST , Hematopoiese Clonal , Citocinas , DNA Metiltransferase 3A/genética , Proteínas de Ligação a DNA/genética , Dioxigenases/genética , Humanos , Mutação , Prevalência , Prognóstico , Proteínas Proto-Oncogênicas/genética , Infarto do Miocárdio com Supradesnível do Segmento ST/diagnóstico , Infarto do Miocárdio com Supradesnível do Segmento ST/genética
20.
Sci Rep ; 12(1): 3294, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35228564

RESUMO

MALAT1 was reported to sponge miR-30e, miR-126 and miR-155 in the pathogenesis of many diseases. Plasma miR-30e can indicate the risk of no-reflow during primary percutaneous coronary intervention (pPCI), while miR-126 can be used as a predictor of coronary slow flow phenomenon. In this study, we compared the diagnostic value of above genes in the prediction of no-reflow phenomenon in ST-segment elevation myocardial infarction (STEMI) subjects receiving pPCI. Quantitative real-time PCR, ELISA, Western blot and luciferase assays were performed to explore the regulatory relationship of MALAT1/miR-30e, MALAT1/miR-126, MALAT1/miR-155, miR-126/HPSE, and miR-155/EDN1. ROC analysis was carried out to evaluate the potential value of MALAT1, miRNAs and target genes in differentiating normal reflow and no-reflow in STEMI patients receiving pPCI. Elevated MALAT1, CRP, HPSE, and EDN1 expression and suppressed miR-30e, miR-155 and miR-126 expression was found in the plasma of STEMI patients receiving pPCI who were diagnosed with no-reflow phenomenon. ROC analysis showed that the expression of MALAT1, miR-30e, miR-126 and CRP could be used as predictive biomarkers to differentiate normal reflow and no-reflow in STEMI patients receiving pPCI. MALAT1 was found to suppress the expression of miR-30e, miR-126 and miR-155, and HPSE and EDN1 were respectively targeted by miR-126 and miR-155. This study demonstrated that MALAT1 could respectively sponge the expression of miR-30e, miR-126 and miR-155. And miR-30e, miR-126 and miR-155 respectively targeted CRP, HPSE and EDN1 negatively. Moreover, MALAT1 could function as an effective biomarker of no-reflow phenomenon in STEMI patients receiving pPCI.


Assuntos
MicroRNAs , Fenômeno de não Refluxo , Intervenção Coronária Percutânea , RNA Longo não Codificante , Infarto do Miocárdio com Supradesnível do Segmento ST , Biomarcadores , Angiografia Coronária/efeitos adversos , Humanos , MicroRNAs/genética , Fenômeno de não Refluxo/diagnóstico , RNA Longo não Codificante/genética , Infarto do Miocárdio com Supradesnível do Segmento ST/genética , Infarto do Miocárdio com Supradesnível do Segmento ST/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...